Coincidences and Fixed Points of New Meir-keeler Type Contractions and Applications

نویسندگان

  • ASHISH KUMAR
  • SHYAM LAL SINGH
  • S. N. MISHRA
  • Rajendra Pant
چکیده

The Meir-Keeler contraction, an important generalization of the classical Banach contraction has received enormous attention during the last four decades. In this paper, we present a review of Meir-Keeler type fixed point theorems and obtain some results using general Meir-Keeler type conditions for a sequence of maps in a metric space. Further, a recent result of Meir-Keeler type common fixed point theorem due to M. Kikkawa and T. Suzuki is generalized under tight minimal conditions. Applications regarding the existence of common solutions of certain functional equations are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed points of generalized $alpha$-Meir-Keeler type contractions and Meir-Keeler contractions through rational expression in $b$-metric-like spaces

In this paper, we first introduce some types of generalized $alpha$-Meir-Keeler contractions in $b$-metric-like spaces and then we establish some fixed point results for these types of contractions. Also, we present a new fixed point theorem for a Meir-Keeler contraction through rational expression. Finally, we give some examples to illustrate the usability of the obtained results.

متن کامل

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

A new characterization for Meir-Keeler condensing operators and its applications

Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...

متن کامل

Meir-Keeler Type Contraction Mappings in $c_0$-triangular Fuzzy Metric Spaces

Proving  fixed point theorem in a fuzzy metric space is not possible for  Meir-Keeler contractive mapping. For this, we introduce the notion of $c_0$-triangular fuzzy metric space. This new space allows us to prove some fixed point theorems for  Meir-Keeler contractive mapping. As some pattern we introduce the class of $alphaDelta$-Meir-Keeler contractive and we establish some results of fixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014